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ORIGINATION OF MICROCONVECTION IN A FLAT LAYER

WITH A FREE BOUNDARY

UDC 532.517.013.4V. K. Andreev and E. A. Ryabitskii

Stability of a flat layer with a free boundary in the model of microconvection is studied in the linear
approximation of equilibrium. The most important physical case is considered, where the Boussinesq
parameter and the Rayleigh number depend linearly on the Marangoni number. It is shown that
long-wave disturbances always decay. Neutral curves for a wide range of dimensionless parameters
are constructed numerically; new (as compared to the Oberbeck–Boussinesq model ) growing distur-
bances are found, which are caused by fluid compressibility. Based on numerical results, the areas of
applicability of the microconvection, Oberbeck–Boussinesq, and viscous heat-conducting fluid models
are established.
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1. Basic Equations. The system of equations called the microconvection model in [1] has the following
form:

wt + w∇w + βχ rotw ×∇θ + β2χ2 div (∇θ ⊗∇θ − |∇θ|2I) = (1 + βθ)(−∇q + ν∆w) + g; (1.1)

div w = 0; (1.2)

θt + w · ∇θ + βχ|∇θ|2 = (1 + βθ)χ∆θ. (1.3)

Here β is the coefficient of volume expansion, χ is the thermal diffusivity, ⊗ is the tensor product, I is the unit
tensor, ν = µ/ρ0 is the kinematic viscosity, and g is the density of external forces. The equation of state of such
a fluid is ρ = ρ0(1 + βθ)−1, where ρ0 > 0 is a constant. The true velocity vector u(x, t) and pressure p(x, t) are
related to the functions w(x, t) and q(x, t) as

u = w + βχ∇θ,
(1.4)

p = ρ0q + βχ[λ + ρ0(ν − χ)]∆θ

(λ is the second viscosity).
It is shown in [1] that the Oberbeck–Boussinesq approximation is invalid for η = l3∗|g|/(νχ) < 1, and one

should use model (1.1)–(1.3) (l∗ is the characteristic scale of the problem).
System (1.1)–(1.3) is supplemented by initial data at t = 0

w = w1(x), div w1 = 0, θ = θ1(x) (1.5)

and by the conditions on the solid wall Σ

w + βχ∇θ = 0, θ = θΣ(x, t). (1.6)

We assume that f(x, t) = 0 is the implicit equation of the free boundary S. Then, with allowance for
substitution (1.4), the following relations are valid on this boundary [2]:
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ft + (w + βχ∇θ) · ∇f = 0; (1.7)

[pgas − ρ0q − βχρ0(ν − χ)∆θ]n + 2ρ0ν[D(w) + βχD(∇θ)]n = 2σ(θ)Hn +∇11σ; (1.8)

k
∂θ

∂n
+ b(θ − θgas) = Q. (1.9)

Equation (1.7) is the kinematic condition, Eq. (1.8) is the dynamic condition, and Eq. (1.9) defines heat transfer
between the liquid and gas medium, which is assumed to be passive (k is the thermal conductivity, b > 0 is the
heat-transfer coefficient, and Q is the heat flux). In (1.8) and (1.9), pgas and θgas are the pressure and temperature
specified in the gas (below, pgas and θgas are constants); n = ∇f/|∇f | is the external normal to S; σ(θ) is
approximated by the linear dependence

σ(θ) = σ1 − æ(θ − θ1), (1.10)

where σ1 and θ1 are the surface tension and temperature at a certain point of S, H is the mean curvature, and
∇11 = ∇− n(n · ∇) is the surface gradient.

Further on, the free boundary has no common points with the solid wall; therefore, the conditions on the
contact line are not considered (see [3, 4]).

Remark. In particular problems, the vector g either depends on time only or is g = const. In these cases,
the substitution (analog of the substitution of pressure by modified pressure in the Oberbeck–Boussinesq model)

q = q̄ + g(t) · x (1.11)

allows one to transform the right side of the momentum equation (1.1) to

(1 + βθ)(−∇q̄ + ν∆w)− βθg.

In the boundary condition (1.8), the expression −ρ0q is replaced by −ρ0q̄ − ρ0g(t) · x.
We have g = (0, 0,−g), where g = const > 0, everywhere below. It can be readily verified that the fluid can

be in equilibrium [2] in the layer 0 < z < l, |x|, |y| < ∞; the upper boundary of the layer is free, and the lower
boundary z = 0 is the solid wall. The equilibrium state is as follows (the subscript 0 indicates the equilibrium
position):

w0 = (0, 0,−βχθ01), θ0(z) = θ00 + θ01z, q0 = −g ln [1 + βθ0(z)]/(βθ01) + c1,

θ01 = [Q + b(θgas − θ00)]/(k + bl), c1 = pgas/ρ0 + g ln [1 + βθ0(l)]/(βθ01).
(1.12)

Here, θ00 = const is the temperature of the solid wall; without losing generality, we assume that θ00 = 0. Thus,
formulas (1.12) yield the exact solution of problem (1.1)–(1.3), (1.6)–(1.10) with a flat free boundary z = l. In
contrast to the classical case, the function q0(z) (analog of pressure) here is distributed by the logarithmic rather
than the linear law.

From (1.12), for β → 0 and other parameters being fixed, we obtain

w0 = 0, θ0 = θ01z, q0 = pgas/ρ0 + gl − gz. (1.13)

Since the pressure is p0 = ρ0q0, Eq. (1.13) is the equilibrium state of the layer of a viscous heat-conducting fluid.
This is not surprising because, by virtue of substitution (1.4), system (1.1)–(1.3) approximates the Navier–Stokes
equations for such a fluid.

Retaining now second-order terms with respect to β in expression (1.12) for q0(z) and denoting the deviation
of pressure from the hydrostatic value as p̄0(z) = ρ0q̄0(z) [q̄0(z) = q0(z)+gz in accordance with substitution (1.11)],
we obtain the equilibrium state of the flat layer in the Oberbeck–Boussinesq model [5]

w0 = 0, θ0(z) = θ01z, p̄0 = pgas + ρ0gβ[θ2
0(z)− θ2

0(l)]/(2θ01). (1.14)

The equality for p̄0(z) is usually written as

dp̄0

dz
= ρ0gβθ0(z).

In this case, model (1.1)–(1.3), with allowance for the above-made comment, approximates the Oberbeck–
Boussinesq model. It suffices to use β = 0 everywhere except for the expression −βθg.

The equilibrium state (1.12) is studied below for stability by the linear approximation.
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2. Small Perturbations. Equations of small perturbations for arbitrary solutions of the problem with a
free boundary (1.1)–(1.3), (1.5)–(1.9) were obtained in [2]. Here, we specify them for the equilibrium state (1.12).
Let U(x, t) = (U, V,W ), T (x, t), and Q(x, t) be the perturbations of the basic equilibrium state w0, θ0, q0 (1.12).
We introduce the dimensionless variables

x′ =
x

l
, t′ =

νt

l2
, U ′ =

lU

ν
, T ′ =

T

µθ01l Pr
, Q′ =

l2Q

ν2
, (2.1)

where µ = 1 for θ01 > 0 and µ = −1 for θ01 < 0.
Substituting (2.1) into (1.1)–(1.3), (1.5)–(1.9), we obtain the following problem of small perturbations in

dimensionless variables (the primes are omitted):
— for −∞ < x < ∞, −∞ < y < ∞, and 0 < z < 1,

Ut − µεWx/ Pr−µε2Txz/ Pr = (1 + µεz)(−Qx + ∆U), (2.2)

Vt − µεWy/ Pr−µε2Tyz/ Pr = (1 + µεz)(−Qy + ∆V ), (2.3)

Wt − µεWz/ Pr+µε2(Txx + Tyy)/ Pr = (1 + µεz)(−Qz + ∆W ) + Ra /(1 + µεz), (2.4)

Tt + µεTz/ Pr+µW/Pr = (1 + µεz)∆T/ Pr, (2.5)

Ux + Vy + Wz = 0; (2.6)

on the free boundary z = 1,

γR/(1 + µε)−Q + ε(1/ Pr−1)∆T + 2Wz + 2εTzz = We(Rxx + Ryy), (2.7)

Uz + 2εTxz + Wx = −M(T + µR/Pr)x, (2.8)

Vz + 2εTyz + Wy = −M(T + µR/Pr)y, (2.9)

Tz + B(T + µR/Pr) = 0, (2.10)

Rt = W + εTz; (2.11)

on the solid wall z = 0,

U + εTx = 0, V + εTy = 0, W + εTz = 0, T = 0; (2.12)

— for t = 0,

U = U1(x, y, z), V = V1(x, y, z), W = W1(x, y, z),
(2.13)

T = T1(x, y, z), R = R0(x, y), U1x + V1y + W1z = 0.

The following notation is introduced in problem (2.2)–(2.13): ε = µθ01lβ > 0 is the Boussinesq parameter,
Pr = ν/χ is the Prandtl number, Ra = µθ01l

4βg/(νχ) ≡ εη is the Rayleigh number, where η = gl3/(νχ) is the
microconvection parameter [1], γ = gl3/ν2 = η/ Pr is the Galileo number, We = σ(θ0(l))l/(ρ0ν

2) is the modified
Weber number, M = µæθ01l

2/(ρ0νχ) is the Marangoni number, and B = bl/k is the Biot number.
The function R(x, y, t) describes the perturbation of the free boundary z = 1, i.e., the deviation along the

normal from this plane at each point.
We seek the solution of problem (2.2)–(2.12) in the form of normal waves

(U , Q, T,R) = (U(z), Q(z), T (z), R) exp [i(α1x + α2y − Ct)], (2.14)

where α1 and α2 are the dimensionless wave numbers along the x and y axes, respectively, and C is the complex
decrement determining the time evolution of the disturbance. The initial data (2.13) can be ignored. Substitution
of (2.14) into (2.2)–(2.12) yields a homogeneous problem with respect to U , V , W , Q, T , R, which can be subjected
to the Squire transformation [6]. Namely, if we assume that Z = α1U + α2V and k2 = α2

1 + α2
2, we obtain the

following boundary-value problem for Z, W , Q, T , R, and the parameter C:
for 0 < z < 1,

−iCZ − iµεk2W/ Pr − iµε2k2T ′/ Pr = (1 + εµz)(Z ′′ − k2Z − ik2Q); (2.15)
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−iCW − µεW ′/ Pr−µε2k2T/ Pr = (1 + εµz)(W ′′ − k2W −Q′) + Ra T/(1 + εµz); (2.16)

−iCT + µεT ′/ Pr+µW/Pr = (1 + εµz)(T ′′ − k2T )/ Pr; (2.17)

iZ + W ′ = 0; (2.18)

for z = 1,
−Q + γR/(1 + µε) + 2W ′ + ε(1 + 1/ Pr)T ′′ + εk2(1− 1/ Pr)T = −We k2R; (2.19)

Z ′ + 2iεk2T ′ + ik2W = −iMk2(µR/Pr+T ); (2.20)

T ′ + B(T + µR/Pr) = 0; (2.21)

−iCR = W + εT ′; (2.22)

for z = 0,
Z = T = 0, W + εT ′ = 0. (2.23)

The prime here denotes differentiation with respect to z.
3. Long Waves. We find the asymptotic behavior of the spectral problem (2.15)–(2.23) as k → 0. We

assume that
Z = Z0 + k2Z1 + . . . , W = W0 + k2W1 + . . . , Q = Q0 + k2Q1 + . . . ,

T = T0 + k2T1 + . . . , C = C0 + k2C1 + . . . , R = R0 + k2R1 + . . . .

In the zero approximation, we obtain the problem

−iC0Z0 = (1 + εµz)Z ′′
0 ,

−iC0W0 − µεW ′
0/ Pr = (1 + εµz)(W ′′

0 −Q′) + Ra T0/(1 + εµz), (3.1)

−iC0T0 + µεT ′
0/ Pr+µW0/ Pr = (1 + εµz)T ′′

0 / Pr,

iZ0 + W ′
0 = 0 (0 < z < 1);

−Q0 + γR0/(1 + µε) + ε(1 + 1/ Pr)T ′′
0 = 0,

Z ′
0 = 0, µPrT ′

0 + B(µPrT0 + R0) = 0, (3.2)

−iC0R0 = W0 + εT ′
0 (z = 1);

Z0 = W0 = T0 = 0, W0 + εT ′
0 = 0 (z = 0). (3.3)

Clearly, the spectral parameter C0 is determined from the boundary-value problem for Z0. Since

iC0

1∫
0

|Z0|2

1 + εµz
dz =

1∫
0

|Z ′
0|2 dz,

then, C0 is a purely imaginary number, and iC0 > 0. The value of C0 can be easily refined. For this purpose, we
introduce a new variable s = 1 + εµz, then, sZ0ss + d2Z0 = 0, Z0(1) = Z ′

0(s1) = 0, s1 = 1 + εµ, d2 = iC/ε2 > 0.
The equation for Z0(s) has the general solution

Z0 =
√

s [h1J1(2d
√

s) + h2J1(2d
√

s )], h1, h2 = const,

where J1 and Y1 are the Bessel functions of the first and second kind. The boundary conditions for Z0 show that
τ = 2d is the root of the transcendental equation

J1(τ)Y0(τ
√

s1)− Y1(τ)J0(τ
√

s1) = 0, (3.4)

which has a denumerable number [7] of real roots τn. Therefore,

iC0n = ε2τ2
n/4, n = 1, 2, . . . . (3.5)

Thus, long-wave perturbations decay monotonically regardless of the sign of θ01.
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4. Layer of a Viscous Heat-Conducting Fluid. In this case, we have ε = 0 (β = 0), and problem
(2.15)–(2.23) is simplified to

−iCZ = Z ′′ − k2Z − ik2Q, −iCW = W ′′ − k2W −Q′,

−iC Pr T + µW = T ′′ − k2T, iZ + W ′ = 0 (0 < z < 1);
(4.1)

−Q + γR + 2W ′ = −We k2R, Z ′ + ik2W = −ik2M(µR/Pr + T ),

T ′ + B(µR/Pr + T ) = 0, −iCR = W (z = 1);
(4.2)

Z = W = T = 0 (z = 0). (4.3)

System (4.1) has the general solution

Z = id(b1 cos dz − b2 sin dz) + ik2(a1 sinh kz + a2 cosh kz)/(k2 + d2),

W = b1 sin dz + b2 cos dz + k(a1 cosh kz + a2 sinh kz)/(k2 + d2),

Q = a1 sinh kz + a2 cosh kz, (4.4)

T = h1 sin qz + h2 cos qz +
µb1 sin dz

q2 − d2
+

µb2 cos dz

q2 − d2
+

kµ

(k2 + d2)(k2 + q2)
(a1 cosh kz + a2 sinh kz),

where a1, a2, b1, b2, h1, and h2 are constants, q2 = iC Pr−k2, and d2 = iC − k2 (Pr 6= 1).
Let iC = τ , then q2 + k2 = τ Pr, k2 + d2 = τ , q2 − d2 = (Pr−1)τ , and from the boundary conditions (4.3),

we obtain

b1 = −k2a2

dτ
, b2 = −ka1

τ
, h2 =

kµa1

τ2 Pr(Pr−1)
. (4.5)

Since R = −W/τ , conditions (4.2) on the free boundary z = 1 reduce to the following (µ2 = 1):

2W ′ −Q− (γ + k2 We)W/τ = 0,

Z ′ + ik2W + iµk2M(µT −W/(τ Pr)) = 0, µPrT ′ + B(µPrT −W/τ) = 0.
(4.6)

System (4.6) together with (4.5) allows one to determine the complex decrement C for Pr 6= 1. Nevertheless,
the corresponding characteristic determinant is extremely complicated, and problem (4.1)–(4.3) for γ = 0 was solved
in [8] by a numerical (orthogonalization) method. Here, we present the dependence of the Marangoni number for
γ 6= 0 for monotonic perturbations, where C = 0. The computations show that

M = − 8µk(k − sinh k cosh k)(k cosh k + B sinh k)
k3 cosh k − sinh 3 k − 8k5 cosh k Pr−1(γ + k2 We)−1

. (4.7)

For γ = 0, this expression coincides with than obtained in [8]. From (4.7), for small k, we have

M ∼ −2µγ Pr(B +1)/3. (4.8)

If we perform similar transformations for the Oberbeck–Boussinesq model, then instead of (4.8), we obtain

M ∼ −(2/3)µγ Pr(B +1)− (11/60) B Ra, (4.9)

where Ra is the Rayleigh number. Note, for heating from below (µ = −1), we have Ra 6 40γ(B +1)/(11 B) = Ra∗,
and there is no neutral curve for Ra > Ra∗. For B → ∞, the limiting value of Ra∗ coincides with that calculated
in [9] for M = 0. The case B = ∞ indicates that the temperature rather than the heat exchange with the ambient
medium is set on the free surface.

5. Analysis of Numerical Results. First, we note that the Boussinesq parameter, Rayleigh number,
and Marangoni number are proportional to each other, since they depend on a controlled parameter: temperature
gradient θ01. Therefore, it is convenient to introduce new parameters α = ρ0νβχ/(æl) and Γ = ρ0βgl2/χ (then,
ε = αM and Ra = ΓM = Pr αγM) and determine the Marangoni number. For the Oberbeck–Boussinesq model,
stability of the layer with a linear dependence of Ra and M was considered in [10–12].

The numerical solution of problem (2.15)–(2.23) for arbitrary perturbations was performed by the method
of orthogonalization. Expression (4.7) was used as a test in numerical construction of the neutral curves. The
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TABLE 1

α γ M∗ k∗

0 0 224.93 5.35
0 103 226.51 5.35

10−4 0 230.88 5.50
10−4 103 232.47 5.50

TABLE 2

γ M∗1 M∗2 M∗3 M∗4 M∗5

106 74.3 739.3 362.7 8032 9825.6
107 49.1 2357 767.3 3214.5 6122

calculation results for α = 0 and Γ 6= 0 coincide with the numerical data of [10] obtained within the framework of
the Oberbeck–Boussinesq model.

Figure 1 shows the neutral curves constructed for γ = 103, Pr = 5.41 · 10−3, We = 104, and α = 10−4.
Curves 1 and 2 correspond to monotonic and oscillatory perturbations, respectively. The asymptotic equations
(3.5) and (4.9) were used for numerical construction of the neutral curve 2. In Fig. 1, the region of stability to
monotonic perturbations is above curve 1, and the region of stability to oscillatory perturbations lies inside curve 2.

The conducted calculations showed that, for low values of the parameters α and Γ, the qualitative behavior
of the neutral curves coincides with the behavior of the corresponding curves for a viscous heat-conducting fluid
(α = 0, γ = 0) [8]. As was found in [8], curve 1 corresponds to thermocapillary perturbations associated with
nonuniform heating of the fluid, and curve 2 indicates the boundary of stability to capillary perturbations induced
by free boundary deformations.

For some values of α and γ, Table 1 gives the minimum values M∗ of the capillary neutral curve (curve 2)
and the values of the wavenumber k∗ at which these minimums are reached. Thus, allowance for compressibility of
the fluid (α 6= 0) leads to stabilization of capillary perturbations; even for low values of the parameter α, the values
of the critical Marangoni numbers can be significantly different.

Another specific feature of the model under consideration is the emergence (with increasing influence of
gravity forces) of new neutral curves, caused by allowance for fluid compressibility. In Fig. 2 constructed for
γ = 106, Pr = 5.41 · 10−3, We = 104, and α = 10−4, these new neutral curves are denoted as 3–5, whereas
curves 1 and 2 are the same as in Fig. 1. Perturbations corresponding to the new mechanism of instability increase
monotonically, and the region of instability is located above the corresponding neutral curve. As is shown in Fig. 3
constructed for γ = 107, an increase in the gravity force leads to further stabilization of capillary perturbations, and
the threshold of stability for thermocapillary perturbations and new perturbations caused by fluid compressibility
decreases. The minimum values M∗j corresponding to the jth neutral curves in Figs. 2 and 3 are listed in Table 2.

Figure 4 constructed for γ = 107, M = 3400, Pr = 5.41 · 10−3, We = 104, and α = 10−4 shows the behavior
of the complex decrement of the problem as a function of the wavenumber. Curves 1 and 2 here refer to the
thermocapillary monotonic and capillary oscillatory modes, respectively. Curves 3 and 4 refer to new perturbations
caused by fluid compressibility. The eigenvalues of the problem corresponding to the neutral curve 5 (in Figs. 2
and 3) lie in the negative half-plane and are not shown in Fig. 4.
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TABLE 3

We M∗1 M∗2 M∗3 M∗4 M∗5

102 74.3 209.8 361.3 8032 9825.6
106 74.6 — 373.4 8165.6 9831.7

The effect of increasing Prandtl number on equilibrium stability is illustrated in Fig. 5 constructed for
γ = 106, Pr = 1, We = 104, and α = 10−4 (the neutral curves are enumerated in the same manner as in the
previous figures). The figure does not show the neutral curve for capillary perturbations. With increasing Prandtl
number, the region of instability is shifted toward very short waves, and the minimum value of the Marangoni
number substantially increases. An increase in Prandtl number leads to significant destabilization of monotonic
perturbations. The threshold of stability decreases for all perturbations. Thus, with respect to thermocapillary
perturbations, the loss of stability occurs already at M = 6.2.

The effect of deformability of the free boundary on equilibrium stability is illustrated by Table 3 composed
for γ = 106, Pr = 5.41 · 10−3, and α = 10−4. As the Weber number decreases, the threshold of stability to capillary
perturbations significantly decreases; correspondingly, as We increases, stability to these perturbations is stabilized.
There is no capillary instability altogether at We = 106. For monotonic perturbations, the changes in the Weber
number have almost no effect on the threshold of stability.

Based on the above-described results, we can conclude that thermocapillary perturbations are most dangerous
in a wide range of problem parameters, whereas oscillatory capillary perturbations dominate in the range of very
short waves for moderate values of Pr and We.

The areas of applicability of the microconvection, Oberbeck–Boussinesq, and viscous heat-conducting fluid
models in the considered problem of equilibrium stability (1.12) are estimated. The influence of buoyancy forces
was studied for fixed values α = 10−4, Pr = 5.41 · 10−3, and We = 104. As a criterion, we used the relation
min

k
(|M(k) − Mt(k)|/M(k)) 6 0.05, where Mt(k) is the neutral curve constructed within the framework of the

model of a viscous heat-conducting fluid (α = 0). The calculations showed that the allowance for buoyancy forces
leads to significant differences in the Marangoni number (greater than 5%) for γ = 8 · 105. The relative error in
finding the critical Marangoni number decreases with decreasing γ.

In studying compressibility of the fluid, the criterion was the relation

min
k

(|M(k)−Mb(k)|/M(k)) 6 0.05,

where Mb(k) is the neutral curve constructed by the Oberbeck–Boussinesq model (α = 0 and Γ 6= 0).
The calculations were performed for γ = 104, Pr = 5.41 · 10−3, and We = 104. It is shown that the allowance
for compressibility starts to play a noticeable role for α > 2 · 10−4. Here, the relative error also decreases with
decreasing α.
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